Free vibration analysis of functionally graded rectangular plates via differential quadrature method

Authors

  • Mohammad Talley Department of Mechanical Engineering, South Tehran Branch, IAU, Tehran, Iran
Abstract:

In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory by using Hamilton's principles . The results are tabulated for a large range of plate aspect ratios. This appears to be the first thorough study by using Differential quadrature method and First order Shear Deformation Theory based that presents effects of boundary conditions , material , and geometrical parameters on natural frequencies of functionally graded rectangular plates . The numerical results on natural frequencies of the FG plate for combination of boundary conditions, volume fraction index, radii to thickness, and aspect ratio are presented and with existing results in the literature are compared.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method

This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...

full text

Bending and Free Vibration Analysis of Functionally Graded Plates via Optimized Non-polynomial Higher Order Theories

Optimization concept in the context of shear deformation theories was born for the development of accurate models to study the bending problem of structures. The present study seeks to extend such an approach to the dynamic analysis of plates. A compact and unified formulation with non-polynomial shear strain shape functions (SSSFs) is employed to develop a static and free vibration analysis of...

full text

Free vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method

In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...

full text

free vibration analysis of thick functionally graded rectangular plates using variable refined plate theory

in this paper, free vibration of functionally graded rectangular simply supported thick plates based on two variable refined plate theory is presented. according to a power-law distribution, the mass density and elasticity modulus of the plate are considered to vary while poisson’s ratio is constant. in order to extract the five constitutive equations of motion, hamilton principle is employed. ...

full text

Dynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates

In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...

full text

Free Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory

In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 1

pages  46- 70

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023